AFRL-IF-RS-TR-2001-111

Final Technical Report
June 2001

ON BUILDING A SCALABLE REAL-TIME FAULT-
TOLERANT SYSTEM FOR EMBEDDED
APPLICATIONS

University of Michigan

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. D341

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE
ROME RESEARCH SITE
ROME, NEW YORK

20010715 048

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical

Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-2001-111 has been reviewed and is approved for publication.

APPROVED:

THOMAS F. LAWRENCE
Project Engineer

FOR THE DIRECTOR: W/L,Z___//

WARREN H. DEBANY, Technical Advisor
Information Grid Division
Information Directorate

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by
your organization, please notify AFRL/IFGA, 525 Brooks Road, Rome, NY 13441-4505.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

ON BUILDING A SCALABLE REAL-TIME FAULT-TOLERANT
SYSTEM FOR EMBEDDED APPLICATIONS

T. Abdelzaher, S. Dawson,
W. C. Feng, F. Jahanian,
S. Iekel-Johnson, A. Mehra, T. Mitton,
A. Shaikh, Kang G. Shin,
A. Wang, and H. Zou

Contractor: University of Michigan

Contract Number: F30602-95-1-0044

Effective Date of Contract: 15 September 1995

Contract Expiration Date: 31 August 2000

Short Title of Work: On Building A Scalable Real-Time
Fault-Tolerant System For Embedded
Applications

Period of Work Covered: Sep 95 - Aug 00

Principal Investigator: Kang G. Shin
Phone: (313) 763-0391
AFRL Project Engineer: Thomas F. Lawrence
Phone: (315) 330-2925

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION
UNLIMITED.

This research was supported by the Defense Advanced Research
Projects Agency of the Department of Defense and was monitored
by Thomas F. Lawrence, AFRL/IFGA, 525 Brooks Road, Rome, NY.

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 07040188

Mi: nnmq Iu'tn for this colection of information is estimated 10 average 1 hour per rssponse, incleding the time for reviewing instructions, ulvc'um sxisting data sources, gathering and malataining the datas needed, and completing snd reviewing
of i Sead ragarding this burden estimate or any sther aspect of this collection of infermation, l:lutﬁng mwmnm for reducing this burden, to Washington Headquarters Sarvices, Directorate for tnformation

Opmlhnﬂlwum. 1215 Jafferson Davis Highway, Suite 1204, Adington, VA 22202-4302, and to the Office of 0 and Budget, P: duction Project {0704-0188), Washingten, DC 20503,

1. AGENCY USE ONLY /Lcave biank] 2 REPORT DATE 3. n'sronr TYPE AND DATES COVERED

JUNE 2001 Final Sep 95 - Aug 00
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
ON BUILDING A SCALABLE REAL-TIME FAULT-TOLERANT SYSTEMS FOR |C - F30602-95-1-0044
EMBEDDED APPLICATIONS PE - 62301E
PR - C929

6. AUTHORI(S) TA- 02

T. Abdelzaher, S. Dawson, W. C. Feng, F. Jahanian, S. lekel-Johnson, A. Mehra, T.| ;. g9
Mitton, A. Shaikh, Kang G. Shin, A. Wang, and H. Zou

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSIES) 8. PERFORMING ORGANIZATION
University of Michigan REPORT NUMBER

Department of Electrical Engineering and Computing Science N/A
Real-Time Computing Laboratory

Ann Arbor Michigan 48109-2122

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

Defense Advanced Research Projects Agency Air Force Research Laboratory AGENCY REPORT NUMBER

3701 North Fairfax Drive 525 Brooks Road

Arlington Virginia 22203-1714 Rome New York 13441-4505 AFRL-IF-RS-TR-2001-111

11. SUPPLEMENTARY NOTES
Air Force Research Laboratory Project Engineer: Thomas F. Lawrence/IFGA/(315) 330-2925

122, DISTRIBUTION AVATLABILITY STATEMENT 12b. DISTRIBUTION CODE
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. ABSTRACT (Maximum 200 words)

Real-time embedded systems have evolved during the past several decades from small custom-designed digital hardware to
large distributed processing systems. As these systems become more complex, their interoperability, evolvability and
cost-effectiveness requirements motivate the use of the commercial-off-the-shelf components. This raises the challenge of
constructing dependable and predictable real-time services for application developers on top of the inexpensive hardware and
software components which has minimal support for timeliness and dependability guarantees We are addressing this
challenge in the ARMADA project.

ARMADA is a set of communication and middleware services that provide support for fault-tolerancc and end-to-end
guarantees for embedded real-time distributed applications. Since real-time performance of such applications depends
heavily on the communication subsystem, the first thrust of the project is to develop a predictable communication service and
architecture to ensure QoS-sensitive message delivery. In its second thrust, ARMADA aims to offload the complexity of
developing fault-tolerance applications from the application programmer by focusing on a collection of modular, composable
middleware for fault-tolerance group communication and replication under timing constraints. Finally, we develop tools for
testing and validating the behavior of our services.

14, SUBJECT TERMS 15. NUMBER OF PAGES
Real-Time, Embedded Distributed Processing, Fault-Tolerance, Quality of Service, 36
Middleware, Group Communication 16. PRICE CODE
17. SECORITY CLASSIFICATION 18. SECURITY CLASSIFICATION 1. SECURITY CLASSIFICATION 20. LIMITATI
OF REPORT OF THIS PAGE OF ABSTRACT ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

TABLE OF CONTENTS

LIST OF FIGURES

1. Introduction

2. Participants and Publications
3. Platform

3.1 General Service Implementation Approach
3.2 Testbed and Implementation Environment

4. ARMADA Real-Time Communication Architecture

4.1 Real-Time Communication Service: Goals and Paradigm
4.2 Service Architecture
4.3 Prototype Implementation

4.3.1 Implementation Environment
4.3.2 Service Configuration
4.3.3 Protocol Stack

5. RTCAST Group Communication Services

5.1 RTCAST Protocols
5.2 RTCAST Design and Implementation

5.2.1 Protocol Stack Design

5.2.2 Integration Into the Mach Kemel
5.2.3 Other RTCAST Implementations
5.2.4 Prioritized Group Communication
5.2.5 Interfacing to Applications

5.3 Other Group Communication Services
6. Real-Time Primary-backup (RTPB) Replication Service
6.1 Introduction to RTPB

6.2 Service Framework
6.3 RTPB Implementation

ii

10
11

11
12
13

13

14
17

17
17
18
18
19

19
20
20

20
21

7. Evaluation Tools

7.1 Orchestra
7.2 COGENT: COntrolled GEneration of Network Traffic

8. Conclusions

References

LIST OF FIGURES

Figure1 Overview of ARMADA Environment

Figure2 A command and control application

Figure3 Service implementation

Figure4 Experimental testbed

Figure 5 Signalling between two hosts

Figure 6 ARMADA services and software architecture for
real-time communication

Figure 7 Service implementation as CORDS server

Figure 8 Software architecture for the RTCAST middleware services

Figure 9 Message reception handler

Figure 10 Token handler

Figure 11 RTCAST protocol stack as implemented

Figure 12 RTPB architecture and server protocol stack

22

22
23

24

24

1 Introduction

ARMADA is a collaborative project between the Real-Time Computing Laboratory (RTCL) at the University of
Michigan and the Honeywell Technology Center. The goal of the project is to develop and demonstrate an inte-
grated set of communication and middleware services and tools necessary to realize embedded fault-tolerant and
real-time services on distributed, evolving computing platforms. These techniques and tools together compose
an environment of capabilities for designing, implementing, modifying, and integrating real-time distributed sys-
tems. Key challenges addressed by the ARMADA project include: timely delivery of services with end-to-end
soft/hard real-time constraints; dependability of services in the presence of hardware or software failures; scala-
bility of computation and communication resources; and exploitation of open systems and emerging standards in
operating systems and communication services.

ARMADA communication and middleware services are motivated by the requirements of large embedded
applications such as command and control, automated flight, shipboard computing, and radar data processing.
Traditionally, such embedded applications have been constructed from special-purpose hardware and software.
This approach results in high production cost and poor interoperability making the system less evolvable and
more prone to local failures. A recent trend, therefore, has been to build embedded systems using Commercial-
Off-The-Shelf (COTS) components such as PC boards, Ethernet links, and PC-based real-time operating systems.
This makes it possible to take advantage of available development tools, leverage on mass production costs, and
make better use of component interoperability. From a real-time application developer’s point of view, the ap-
proach creates the need for generic high-level software services that facilitate building embedded distributed
real-time applications on top of inexpensive widely available hardware. Real-time operating systems typically
implement elementary subsets of real-time services. However, monolithically embedding higher-level support in
an operating system kernel is not advisable. Different applications have different real-time and fault-tolerance
requirements. Thus, catering to all possible requirement ranges in a single operating system would neither be
practical nor efficient. Instead, we believe that a composable set of services should be developed of which only
a subset may need to exist for any given application. This philosophy advocates the use of a real-time micro-
kernel equipped with basic real-time support such as priority-based scheduling and real-time communication, in
addition to a reconfigurable set of composable middleware layered on top of the kernel. Appropriate testing and
validation tools should be independently developed to verify required timeliness and fault-tolerance properties of
the distributed middleware.

The ARMADA project is therefore divided into three complementary thrust areas: (i) low-level real-time com-
munication support, (ii) middleware services for group communication and fault-tolerance, and (iii) dependability
evaluation and validation tools. Figure 1 summarizes the structuring of the ARMADA environment.

The first thrust focused on the design and development of real-time communication services for a microkernel.
A generic architecture is introduced for designing the communication subsystem on hosts so that predictability
and QoS guarantees are maintained. The architecture is independent of the particular communication service. It
is illustrated in this paper in the context of presenting the design of the real-time channel; a low-level communi-
cation service that implements a simplex, ordered virtual connection between two networked hosts that provides
deterministic or statistical end-to-end delay guarantees between a sender-receiver pair.

The second thrust of the project has focused on a collection of modular and composable middleware services
(or building blocks) for constructing embedded applications. A layered open-architecture supports modular in-
sertion of a new service or implementation as requirements evolve over the life-span of a system. The ARMADA
middleware services include a suite of fault-tolerant group communication services with real-time guarantees,
called RTCAST, to support embedded applications with fault-tolerance and timeliness requirements. RTCAST
consists of a collection of middleware including a group membership service, a timed atomic multicast service, an
admission control and schedulability module, and a clock synchronization service. The ARMADA middleware

EVALUATION

TOOLS SERVICES

MIDDLEWARE J

REAL-TIME

Microkernel CHANNELS

Figure 1: Overview of ARMADA Environment.

services also include a real-time primary-backup replication service, called RTPB, which ensures temporally
consistent replicated objects on redundant nodes.

The third thrust of the project is to build a toolset for validating and evaluating the timeliness and fault-
tolerance capabilities of the target system. Tools under development include fault injectors at different levels
(e.g. operating system, communication protocol, and application), a synthetic real-time workload generator, and
a dependability/performance monitoring and visualization tool. The focus of the toolset research is on portability,
flexibility, and usability.

Figure 2 gives an overview of a prospective application to illustrate the utility of our services for embedded
real-time fault-tolerant systems. The application, developed at Honeywell, is a subset of a command and control
facility. Consider a radar installation where a set of sensors are used to detect incoming threats (e.g., enemy
planes or missiles in a battle scenario); hypotheses are formed regarding the identity and positions of the threats,
and their flight trajectories are computed accordingly. These trajectories are extrapolated into the future and
deadlines are imposed to intercept them. The time intervals during which the estimated threat trajectories are
reachable from various ground defense bases are estimated; and appropriate resources (weapons) are committed
to handle the threats; eventually, the weapons are released to intercept the threats.

The services required to support writing such applications come naturally from their operating requirements.
For example, for the anticipated system load, communication between different system components (the different
boxes in Figure 2) must occur in bounded time to ensure a bounded end-to-end response from threat detection to
weapon release. Our real-time communication services compute and enforce predictable deterministic bounds on
message delays given application traffic specification. Critical system components such as hypothesis testing and
threat identification have high dependability requirements which are best met using active replication. For such
components, RTCAST exports multicast and membership primitives to facilitate fault detection, fault handling,
and consistency management of actively replicated tasks. Similarly, extrapolated trajectories of identified threats
represent critical system state. A backup of such state needs to be maintained continually and updated to represent
the current state within a tolerable consistency (or error) margin. Our primary-backup replication service is
implemented to meet such temporal consistency requirements. Finally, our testing tools decrease development
and debugging costs of the distributed application.

The rest of this paper is organized as follows. Section 711: :output lists the students who participated in the
project, and contains a list of publications based on work that was conducted as part of the Armada research

g P

Plotting

onte
Optimization

[MU O
L) wem_0o
Lol a J
[- N T

=7
Sensory Input @ @C)
Risk
Hypothesis Assessment
Testing and 1
Threat
Identification
Trajectory Terrain Masking
Extrapolation
Surveillance
"
Impact Time Intelligence
Estimation
Computing
Accessibility
from Bases
Compute
Weapon Base
Positions

Weapon
Assignment
and Scheduling

Weapon
Release

Figure 2: A command and control application

program. Section 3 describes the general approach for integrating ARMADA services into a microkernel frame-
work. It also presents the experimental testbed and implementation environment of this project. The subsequent
sections focus on the architecture, design, and implementation of key communication and middleware services
in ARMADA. Section 4 introduces real-time communication service. Section 5 presents the RTCAST suite of
group communication and fault-tolerance services. Section 6 describes the RTPB (real-time primary-backup)
replication service. Section 7 briefly discusses the dependability evaluation and validation tools developed in this
project. Section 8 concludes the paper.

2 Participants and Publications

The research efforts conducted as part of the Armada project involved a number of graduate students from the
University of Michigan, as well as research staff from the University of Michigan and Honeywell Technology
Center. The primary research staff included:

1. Kang Shin (Co-Principal Investigator), Univ. of Michigan
Farnam Jahanian (Co-Principal Investigator), Univ. of Michigan
Peter Chen, Univ. of Michigan

Sunondo Ghosh, Honeywell Technology Center

Brian Vanvoorst, Honeywell Technology Center

Nicholas Weininger, Honeywell Technology Center

N e wm A W

. Jeremy Norton, Honeywell Technology Center
Students who were awarded PhDs wholly or in part based on their work for the Armada project include:

1. Tarek Abdelzaher
Scott Dawson
Wu-Chang Feng
Scott Iekel-Johnson
Atri Indiresan
Ashish Mehra

Anees Shaikh

® N o kW

Hengming Zou
The remaining students, and any degrees they received from the project, are:

1. J.-J. Liou (MS)
2. Pedro Marron (MS)

3.
4.

Todd Mitton (MS)
Ziqun Wang (MS)

Results from the Armada project have been published in a number of technical journals, conferences, and
workshops. They provide a more detailed description of our research results than can be reasonably contained in
this summary report. These publications include:

1.

10.

11.

12.

T. Abdelzaher, E. Atkins, and K. G. Shin, “QoS negotiation in real-time systems and its application to
automated flight control,” IEEE Trans. on Computers, vol. 49, no. 11, pp. 1155-1169, Nov. 2000.

S. Johnson, F. Jahanian, A. Miyoshi, D. de Niz, and R. Rajkumar, “Constructing Real-time Group Commu-
nication Middleware Using the Resource Kernel,” Proc. 21st IEEE Real-Time Systems Symposium (RTSS-
2000), Orlando, FL, November, 2000, pp. 3-12.

. S. Johnson, F. Jahanian, S. Ghosh, B. Vanvoorst, N. Weininger, and W. Heimerdinger, “Experiences with

Group Communication Middleware,” Practical Experience Report, Proc. IEEE International Conference
on Dependable Systems and Networks 2000 (FTCS-30/DCCA-8), New York, New York, June, 2000, pp.
3-12.

T. F. Abdelzaher and K. G. Shin, “Period-based load partitioning and assignment for large real-time appli-
cations,” JEEE Trans. on Computers, vol. 49, no. 1, pp. 81-87, January 2000.

Tarek Abdelzaher and Kang G. Shin, “QoS provisioning with gContracts in web and multimedia servers,”
Proc. IEEE RTSS99, pp. 44-53, Phoenix, AZ, Dec. 1999.

Tarek F. Abdelzaher and K. G. Shin, “Combined task and message scheduling in distributed real-time
systems,” IEEE Trans. on Parallel and Distributed Systems, vol. 10, no. 11, pp. 1179~1191, Nov. 1999.

. T. Abdelzaher, S. Dawson, W.-C. Feng, F. Jahanian, S. Johnson, A. Mehra, T. Mitton, A. Shaikh, K. Shin,

Z. Wang, and H. Zou, “ARMADA Middleware and Communication Services,” Real-Time Systems Journal,
v. 16(2-3), pp. 127-153, 1999.

Scott Johnson, Farnam Jahanian, and Jigney Shah, “The Inter-Group Router Approach to Scalable Group
Composition,” Proc. of the 19th International Conference on Distributed Computing Systems (ICDCS99),
Austin, TX, pp. 4-14, June, 1999.

H. Zou and F. Jahanian, “Real-Time Primary-Backup Replication with Temporal Consistency Guarantees,”
IEEE Transactions on Parallel & Distributed Systems, vol. 10, no. 6, pp. 533-48, June 1999.

Ashish Mehra, Anees Shaikh, Tarek Abdelzaher, Zhiqun Wang, and Kang G. Shin, “Realizing Services
for Guaranteed-QoS Communication on a Microkernel Operating System,” Proc. 19th IEEE Real-Time
Systems Symposium, Madrid, Spain, pp. 460—469, Dec. 1998.

H. Zou and F. Jahanian, “Optimization of a Real-Time Primary-Backup Replication Service,” Proceedings
of the 17th Symposium on Reliable Distributed Systems (SRDS98), West Lafayette, pp. 177-85, Oct. 1998.

Tarek Abdelzaher and Kang G. Shin, “End-host architecture for QoS-adaptive communication,” IEEE
RTAS98, pp. 121-130, June 1998.

13. H. Zou and F. Jahanian, “Real-Time Primary-Backup Replication with Temporal Consistency Guarantees,”

Proceedings of International Conf. on Distributed Computing Systems, Amsterdam, The Netherlands, May
1998.

14. Atri Indiresan, Ashish Mehra, and Kang G. Shin, “The END: A network adapter design tool,” INFO-
COM98, April 1998.

15. S. Dawson, F. Jahanian, and T. Mitton, “Experiments on Six Commercial TCP Implementations Using a
Software Fault Injection Tool,” Software Practice and Experience, vol. 27, no. 12, pp. 1385-1410, Decem-
ber 1997.

16. T. Abdelzaher, S. Dawson, W.-C. Feng, F. Jahanian, S. Johnson, A. Mehra, T. Mitton, A. Shaikh, K. Shin,
Z. Wang, and H. Zou, “ARMADA Middleware Suite,” IEEE Workshop on Middleware for Distributed
Real-Time Systems and Services, San Francisco, December 2, 1997.

17. A. Mehra, J. Rexford, H. Ang, and F. Jahanian, “Design and Evaluation of a Window-Consistent Replica-
tion Service,” IEEE Transactions on Computer, vol. 46, no. 9, September 1997.

18. A. Mehra, A. Indiresan, and K. G. Shin, “Structuring communication software for quality-of-service guar-
antees,” Proc. 17th IEEE Real-Time Systems Symp., pp. 155-164, December 1996.

19. T. Abdelzaher, A. Shaikh, F. Jahanian, and K. Shin, “RTCAST: Lightweight Multicast for Real-Time
Process Groups,” IEEE Real-Time Technology and Applications Symposium, Best Student Paper Award,
Brookline, Mass, pp. 250-259, June 1996.

20. S. Dawson, F. Jahanian, T. Mitton, and T.-L. Tung, “Testing Distributed Systems via Protocol Fault Injec-
tion,” FTCS-26, Sendai, Japan, pp. 404-414, June 1996.

3 Platform

The services developed in the context of the ARMADA project are to augment the essential capabilities of a real-
time microkernel by introducing a composable collection of communication, fault-tolerance, and testing tools
to provide an integrated framework for developing and executing real-time applications. Most of these tools
are implemented as separate servers in user space that can be colocated for efficiency considerations within the
microkernel. Note that the advantages of server colocation within the microkernel do not defeat the purpose of
using microkemels in the first place. This is because colocated servers (i) can be developed in user space which
greatly reduces their development and maintenance cost, and (ii) can be selectively included into the kernel
in accordance with the application requirements; this is both more efficient and more sensitive to particular
application needs. Below we describe the experimental testbed and implementation environment common to the
aforementioned services. A detailed description of the implementation approach adopted for various services
will be given in the context of each particular service.

3.1 General Service Implementation Approach

One common aspect of different middleware services in a distributed real-time system is their need to use inter-
machine communication. All ARMADA services either include or are layered on top of a communication layer
which provides the features required for correct operation of the service and its clients. For example, RTCAST
implements communication protocols to perform multicast and integrate failure detection and handling into the
communication subsystem. Similarly, the Real-Time Channels service implements its own signalling and data

transfer protocols to reserve resources and transmit real-time data along a communication path. Since commu-
nication seemed to warrant particular attention in the context of this project, we developed a generic real-time
communication subsystem architecture. The architecture can be viewed as a way of structuring the design of
communication-oriented services for predictability, as opposed to being a service in itself. This architecture is
described in detail in Section 4 and is illustrated by an example service: the Real-Time Channel. ARMADA
communication services are generally layered on top of IP, or UDP/IP. We do not use TCP because its main
focus is reliability as opposed to predictability and timeliness. Real-time communication protocols, on the other
hand, should be sensitive to timeliness guarantees, perhaps overriding the reliability requirement. For example,
in video conferencing and process control, occasional loss of individual data items is preferred to receiving reli-
able streams of stale data. To facilitate the development of communication oriented services, our communication
subsystem is implemented using the z-kernel object-oriented networking framework originally developed at the
University of Arizona [1], with extensions for controlled allocation of system resources [2]. The advantage of
using z-kemnel is the ease of composing protocol stacks. An z-kernel communication subsystem is implemented
as a configurable graph of protocol objects. It allows easy reconfiguration of the protocol stack by adding or
removing protocols. More details on the z-kemel can be found in [1].

Following the microkernel philosophy, our services are designed as user level servers. Clients of the service
are separate processes that communicate with the server via the kernel using a user library. The library exports
the desired middleware API. Communication-oriented services generally implement their own protocol stack that
lies on top of the kemel-level communication driver. The z-kemel framework permits migration of the protocol
stack into the operating system kernel. We use this feature to implement server colocation into the microkernel.
Figure 3-a and 3-b illustrate the configurations of user level servers and colocated servers respectively. An
example of server migration into the kernel is given in the context of the RTCAST service in Section 5. The
RTCAST server was developed in user space (as in Figure 3-a), then reconfigured to be integrated the into
the kernel (as in Figure 3-b). Whether the server runs in user space or is colocated in the microkemel client,
processes use the same service API to communicate with it. If the service is colocated in the kemel, an extra
context switch to/from a user level server process is saved. Automatically-generated stubs interface the user
library (implementing the service API) to the microkernel or the server process. These stubs hide the details of
the kernel’s local communication mechanism from the programmer of the real-time service, thus making service
code independent from specifics of the underlying microkernel.

3.2 Testbed and Implementation Environment

In the following sections description is given of the implementation of each individual service. To provide a
common context for that description, we outline here the specifics of the underlying implementation platform.
Our testbed (see Figure 4) comprises several Pentium-based PCs (133 MHz) connected by a Cisco 2900 Ethernet
switch (10/100 Mb/s), with each PC connected to the switch via 10 Mb/s Ethernet. We have chosen the MK 7.2
microkernel operating system from the Open Group (OG)' Research Institute to provide the essential underlying
real-time support for our services. The MK microkernel is originally based on release 2.5 of the Mach operating
system from CMU. While not a full-fledged real-time OS, MK 7.2 supports the z-kernel and includes several im-
portant features that facilitate provision of QoS guarantees. For example, MK 7.2 provides a unified framework
for allocation and management of communication resources. This framework, known as CORDS (Communica-
tion Objects for Real-time Dependable Systems) [2], was found particularly useful for implementing real-time
communication services. More detail on CORDS support and an example of using it is discussed in the context
of presenting real-time channels in Section 4. Our implementation approach has been to utilize the functionality
and facilities provided in OG’s environment and augment it with our own support when necessary. The next

'Open Group is formerly known as the Open Software Foundation (OSF)

Smmem— Em—
Server Application Application
(and protocol stack)

Library Library
P Stub Stub
"\ ~— N~—————
Application Application user TTTTTtslemmmees ‘
Library Library ' » :
(___Stub J {___ Stub)
N LN PR g ' Colocated
user \ 4o LN K . (
- S R B e Microkemel Server
] 4
']
Microkernel device driver » e
— -~ device driver
' ’ P i
, . .)
network ' 1 network : :
-1 !] L
(a) User level server configuration (b) Colocated server

Figure 3: Service implementation.

release of MK microkernel is expected to provide additional real-time support such as capacity reserves. This
support is important for composability, in that it provides isolation of temporal behavior of individual services,
so that predictability is maintained regardless of the deployed service mix.

4 ARMADA Real-Time Communication Architecture

In this section we present the overall architecture of the ARMADA real-time communication service. We first
motivate and outline the goals and paradigm of real-time communication that we adopt. Subsequently, we high-
light key aspects of the service architecture that we believe meets the stated goals.

4.1 Real-Time Communication Service: Goals and Paradigm

Our primary goal is to provide applications and middleware with a service that can be used to request and
obtain (real-time) guaranteed-QoS unicast connections between two hosts. Such a service must satisfy three
primary architectural requirements for guaranteed-QoS communication [3]: (i) maintenance of per-connection
QoS guarantees, (ii) overload protection via per-connection traffic enforcement, and (iii) faimess to best-effort
traffic. In order for the service to satisfy these requirements, an application must specify the worst-case traffic
profile it expects to generate, and the end-to-end QoS it desires for different QoS parameters such as delay,
bandwidth, and likelihood of packet loss. A secondary, but very important, goal is to design the service in a way
that allows (a) constituent architectural components to be reused for other middleware services, and (b) flexibility
to realize other QoS paradigms and service models. This is important because in our environment, multiple
middleware services must coexist and interoperate; reusing architectural components, whenever possible, makes
service integration relatively easier. Equally important, in order to realize generic components, one must decouple
the service model from the component architecture. This facilitates the ability to extend the service to more
relaxed QoS models such as probabilistic guarantees, and QoS negotiation and degradation.

To realize the real-time communication service, we adopt the service model of real-time channels [4, 5], a
paradigm for guaranteed-QoS communication in packet-switched networks. Not only is this model similar to
other proposals for guaranteed-QoS communication [6), we have developed significant insights in extending the

Figure 4: Experimental testbed.
/ request
e —— —
- —ee
reply
S: Source node I: Intermediate node | D: Destination node

Figure 5: Signalling between two hosts.

model appropriately for practical use [7, 3]. A real-time channel is a simplex, fixed-route, virtual connection
between a source and a destination host, with sequenced messages and associated performance guarantees on
message delivery. Real-time communication via real-time channels is performed in three phases (see Figure 5).
In the first phase, the source host S (sender) creates a channel to the destination host D (receiver) by specifying
the channel’s traffic parameters and QoS requirements. Signalling requests are sent from S to D via one or more
intermediate (I) nodes; replies are delivered in the reverse direction from D to S. If successfully established, S
can send messages on this channel to D; this constitutes the second phase. When the sender is done using the
channel, it must close the channel (the third phase) so that resources allocated to this channel can be released.
Traffic and QoS Specification: Traffic generation on real-time channels is based on a linear bounded arrival
process [8, 9] characterized by three parameters: maximum message size (M4 bytes), maximum message rate
(Rmaz messages/second), and maximum burst size (Bp,q, messages). The notion of logical arrival time is used
to enforce a minimum separation Iy = ﬁ- between messages on the same real-time channel. This ensures
that a channel does not use more resources than it reserved at the expense of other channels. The QoS on a
real-time channel is specified as the desired deterministic, worst-case bound on the end-to-end delay experienced
by a message. See [5] for more details.

Resource Management: Admission control for real-time channels is provided by Algorithm D_order (5],
which uses fixed-priority scheduling for computing the worst-case delay experienced by a channel at a link. When
a channel is to be established at a link, the worst-case response time for a message (when the message completes
transmission on the link) on this channel is estimated based on non-preemptive fixed-priority scheduling of packet

APPLICATIONS & MIDDLEWARE
[REAL-TIME COMMUNICATION API]
signalling data transfer

— resource -
reservation

[LOWER PROTOCOL STACK LAYERS] i
'RTC SERVICE

[NETWORK]

Figure 6: ARMADA services and software architecture for real-time communication.

transmissions. The total response time, which is the sum of the response times over all the links on the route of
the channel, is checked against the maximum permissible message delay and the channel established only if
the latter is greater. A local delay bound is derived from the worse-case response time and the specified end-
to-end delay bound. Run-time link scheduling, on the other hand, is governed by a multi-class variation of the
earliest-deadline-first (EDF) policy.

QoS-sensitive Communication Subsystem: We have proposed and evaluated a QoS-sensitive communication
subsystem architecture realizing real-time channels [3). The architecture delivers contracted QoS to individual
channels, provides isolation between connections, manages memory and CPU resources in accordance with
priorities derived from QoS specification, performs admission control to protect established QoS guarantees, and
uses policing to isolate misbehaving traffic. An instantiation of this architecture is described in Section 4.2.

4.2 Service Architecture

Figure 6 illustrates the software architecture of our guaranteed-QoS service at hosts and intermediate nodes. The
core functionality of the service is realized via three distinct components that interact to provide guaranteed-
QoS communication: real-time communication API (RTC API), RTCOP, and CLIPS. While applications use
the service via the RTC API, end-to-end signalling is coordinated by RTCOP and run-time management of
resources for data transfer performed by CLIPS. As mentioned above, the run-time resource management in the
service architecture is based in large part on the architecture proposed in [3], with significant enhancements to
accommodate the specific requirements of the ARMADA project and its implementation environment. Below we
give a brief overview of the three components of our service architecture. Details on the internals of the service
components and their interaction are provided in [10].

Invocation via RTC API: Applications establish and teardown guaranteed-QoS connections, and perform data
transfer on these connections, by invoking routines exported by the RTC APIL The API can be viewed as com-
prising two parts. The top half interfaces to applications and is responsible for validating application requests and
creating internal state. The bottom half interfaces to RTCOP for signalling, i.e., connection setup and teardown,
and to CLIPS for QoS-sensitive data transfer. The design of the API has been significantly influenced by the
structure of the sockets API in BSD Unix and its variants.

Signalling via RTCOP: End-to-end signalling and resource reservation is performed by RTCOP to establish
and teardown guaranteed-QoS connections across the communicating hosts, possibly via multiple network nodes.
RTCOP provides reliable datagram semantics for signalling requests and replies between nodes, and performs

10

CORDS Server

Source

RTC API

channel

Destination

RTC API

SR SEEEE—
Application Application
— X-kemel paths
librtc librtc
(_ MIG stubs Path filter __MIG stubs |
\ FA [3 4
user l ' S RN / 3
NN g T 1 N . . .
xmit path) i recv path
. device driver
OSF Mach kernel SomDs
RTC server RTC server
E ? [OSF MACH KERNEL] [OSF MACH KERNEL J
[] [} 5
network i ‘ | |
Y ' Ethernet

(a) CORDS server configuration (b) Protocol stack

Figure 7: Service implementation as CORDS server.

consistent channel state management at each node. It interfaces to the admission control module (that keeps track
of available communication resources) to admit new connection requests, and establish appropriate connection
state to store connection-specific information. Similarly, it interfaces to the routing module to select a (unicast)
path on which to perform the end-to-end signalling. As shown in Figure 6, it interfaces to CLIPS and directly to
local resources for resource reservation functions.

Data transfer via CLIPS: CLIPS facilitates network data transport on established real-time channels, providing
services for management of CPU and link resources during data transfer in order to maintain QoS guarantees.
For example, it provides services for allocation of protocol processing resources and fragmentation of application
data (messages) into smaller units (packets) for network transmission. In addition to managing CPU resources for
protocol processing, CLIPS also performs link access scheduling to manage link bandwidth such that all active
connections receive their promised QoS. This involves abstracting the link in terms of transmission delay and
bandwidth, and scheduling all outgoing packets for network access. The minimum requirement for provision of
QoS guarantees is that packet transmission time on the link be bounded and predictable. CLIPS also performs
traffic enforcement on a per-channel basis, forcing an application to conform to the channel’s traffic specification
and provide overload protection between established connections. The design of CLIPS has been motivated by
the requirements of the different ARMADA real-time communication and middleware services.

4.3 Prototype Implementation

We have developed a prototype implementation of the service architecture described in the preceeding section.
Below we briefly describe the implementation environment, followed by a description of the implementation
approach adopted. Additional details on the implementation, parameterization, and evaluation of the service are
provided in [10].

4.3.1 Implementation environment

Figure 7 shows the software configuration we have realized for our service implementation using the CORDS [2]
framework. As shown in Figure 7(a), applications link with a library, 1ibrtc, which implements RTC API and
interfaces to the RTC service on behalf of the application. librtc is in turn realized on top of MIG (Mach
Interface Generator) interface stubs which provide the necessary support for Mach IPC. Each library routine

11

translates to an IPC call to the top-level anchor protocol in the CORDS server (Figure 7(b)), which interacts with
the rest of the protocol stack on behalf of the application.

CORDS: CORDS is based on the x-kernel object-oriented networking framework originally developed at the
University of Arizona [1], with some significant extensions for controlled allocation of system resources. The
primary advantage of using CORDS for our prototype implementation is its support for communication resource
allocation. It provides a unified mechanism for allocating memory and CPU thread resources to individual com-
munication protocols on machines along a connection path from source to destination. Such support facilitates
resource management to maintain per-connection QoS guarantees which plays a significant role in the realiza-
tion of our service architecture on this platform. Another advantage of using CORDS is the ease of composing
protocol stacks in the x-kemnel networking framework.

The Path Framework: While preserving the structure and functionality of the original x-kernel, CORDS adds
two abstractions, paths and memory allocators, to provide an interface for path-specific reservation/allocation
of system resources such as message buffers, dynamically allocated memory, input packet buffers, and threads
that shepherd messages up a protocol stack [2]. Paths, coupled with allocators, provide a capability for reserving
and allocating resources at any protocol stack layer on behalf of a particular class of messages. With packet
demultiplexing at the lowest level (device driver), it is possible to isolate packets on different paths from each
other. Incoming packets are stored in buffers explicitly tied to the appropriate path and serviced by threads
previously allocated to that path. Moreover, threads reserved for a path may be assigned one of several scheduling
policies and priority levels.

Paths greatly facilitate realization of a connection-oriented protocol stack, since the knowledge of paths is
available at any layer in the protocol stack. However, the CORDS framework envisions a relatively static use of
paths, with a single path for best-effort traffic and a few paths for different classes of traffic. That is, there are
never more than perhaps ten active paths, all of these long-lived and preconfigured. Accordingly, the CORDS
path library provides no support for path teardown or resource reclamation, operations which are necessary in
a dynamic environment in which paths are created and destroyed frequently. To realize a one-to-one mapping
between real-time channels and paths, we have extended the path framework with support for path destruction
and reclamation of resources associated with a path.

4.3.2 Service configuration

While the CORDS framework can be used at user-level as well in the kernel, we have developed the prototype
implementation as a user-level CORDS server. There are several reasons for this choice. The first and most
obvious is the ease of development and debugging, resulting in a shorter development cycle. While this is true
in general, it is particularly critical when handling timing-related software and the associated bugs. The second
- reason is the infeasibility of the other alternative (to pure in-kernel development) for our implementation. CORDS
allows an x-kemel protocol graph to span address space (and protection) boundaries via proxies [2]. Thus, our
implementation could have spanned user and kernel space, with portions of our implementation developed in
user-space and moved into the kemel after debugging and testing. However, this was not feasible for two reasons:
(i) strong inter-dependencies between the service components, and (ii) interaction of CLIPS with multiple layers
of the protocol stack. It was important, therefore, to keep all service components in one address space, i.e., in the
CORDS server.

Although this design is prone to high overhead in terms of additional IPC context switches, the server is
designed such that it may be easily moved into the kernel in subsequent versions. The bottom layer of the
CORDS protocol stack in the server interfaces with the kernel device driver via a Mach device port. The link
scheduler is implemented here, as close as possible to the network without being in the kernel. The kernel driver
has mechanisms to route incoming packets to the corresponding communication server (via a net filter). The

12

CORDS server, in turn, employs a path filter to route the packets to the right pool of packet buffers and shepherd
threads. The net filter and path filter are shown in Figure 7(a) representing this mechanism.

4.3.3 Protocol stack

The CORDS-based protocol stack for real-time communication is shown in Figure 7(b). Protocols comprising
this stack include the RTC API anchor, CLIPS, RTCOP, RTROUTER, IP, ETH, and ETHDRYV; these are briefly
described below.

RTC API Anchor: The anchor protocol for RTC API is the top-level protocol configured directly above RTCOP.
It interfaces on the top with the applications via the MIG stubs, translating application requests to specific invo-
cations of operations on RTCOP (for signaling) or CLIPS (for data transfer). It maintains several mappings for
real-time channels, such as the association between Mach data and signalling ports, RTCOP ports, and x-kernel
sessions. It also keeps track of appropriate client state for client death cleanup.

CLIPS: CLIPS spans several layers of the protocol stack, exporting an interface that is used by RTC API,
RTCOP, and ETHDRYV. CLIPS provides a generic mechanism for prioritized, time-bounded message processing
and communication at end hosts. Specifically, it implements support for associating communication endpoints of
a protocol stack with clips, an abstraction to which CLIPS allocates resources. It also implements QoS-sensitive
CPU and link bandwidth allocation, and provides message queues for traffic originating from the RTC APL
RTCOP: RTCORP is realized as an x-kernel protocol residing above a two-part network layer composed of
RTROUTER and IP. It exports an interface to RTC API for specification of channel establishment and tear-
down requests and replies, and selection of logical ports for channel endpoints. RTCOP also utilizes four other
interfaces during signalling: an (internal) interface to admission control, an interface to RTROUTER, an inter-
face to CLIPS, and an interface to local path-specific system resources such as packet queues, buffers, and thread
pools.

RTROUTER: Real-time channels currently use the default IP routing. However, to keep the routing interface
independent of IP, we provide RTROUTER as a go-between protocol. RTROUTER is intended to allow RTCOP
to work with more sophisticated routing protocols that support QoS- or policy-based routing. In the current im-
plementation, RTROUTER performs the following functions: (i) specifies the connectivity of real-time channel
nodes with its pre-configured topology tables, (ii) provides a logical RTHost (real-time host) addressing mech-
anism for real-time channels, and (iii) handles forwarding of RTCOP packets between source and destination
RTHosts.

IP, ETH, ETHDRYV: The IP, ETH, and ETHDRV protocols are standard implementations distributed with the
CORDS framework. ETH is a generic hardware-independent protocol that provides an interface between higher
level protocols and the actual Ethernet driver. ETHDRV is specific to a particular user-level implementation of
the CORDS server. It is an out-of-kernel device driver that interacts with the network device driver in the Mach
kernel through system calls to a Mach device control port. We have made modifications to the ETHDRYV protocol
to realize the link scheduler and extensions for resource reclamation on paths.

5 RTCAST Group Communication Services

The previous section introduced the architecture of the ARMADA real-time communication service. The second
thrust of the project has focused on a collection of modular and composable middleware services for constructing
embedded applications. The ARMADA middleware can be divided into two relatively independent suites of
services:

e RTCAST group communication services, and

13

e RTPB real-time primary-back replication service.

This section presents the RTCAST suite of group communication and fault-tolerance services. Section 6 describes
the RTPB (real-time primary-backup) replication service.

5.1 RTCAST Protocols

Process groups are a widely-studied paradigm for designing dependable distributed systems in both asynchronous
[11, 12, 13, 14] and synchronous [15, 16, 17] environments. In this approach, a distributed system is structured
as a group of cooperating processes which provide service to the application. A process group may be used, for
example, to provide active replication of system state or to rapidly disseminate information from an application to
a collection of processes. Two key primitives for supporting process groups in a distributed environment are Sfault-
tolerant multicast communication and group membership. Coordination of a process group must address several
subtle issues including delivering messages to the group in a reliable fashion, maintaining consistent views of
group membership, and detecting and handling process or communication failures. If multicast messages are
atomic and globally ordered, process group members can be kept consistent when process state is determined by
initial state and the sequence of received messages.

We developed RTCAST to provide a lightweight fault-tolerant multicast and membership service for real-time
process groups which exchange periodic and/or aperiodic messages. The RTCAST group communication does
not require acknowledgments for every message, and message delivery is immediate without needing additional
“rounds” of message transmissions. RTCAST is designed to support hard real-time guarantees without requiring
a static schedule to be computed a priori for application tasks and messages. Instead, an on-line schedulability
analysis component performs admission control on multicast messages. We envision the proposed multicast
and membership protocols as part of a larger suite of middleware group communication services that form a
composable architecture for the development of embedded real-time applications. As illustrated in Figure 8§,
the RTCAST suite of services include a timed atomic multicast, a group membership service and an admission
control service. The first two are tightly coupled and thus are considered a single service. Clock synchronization
is typically required for real-time protocols and is enforced by the clock synchronization service. To support
portability, a virtual network interface layer exports a uniform network abstraction. Ideally, this interface would
transparently handle different network topologies, each having different connectivity and timing or bandwidth
characteristics exporting a generic network abstraction to upper layers. The network is assumed to support
unicast datagram service. Finally, the top layer provides an application programming interface for real-time
process group.

RTCAST supports bounded-time message transport, atomicity, and order for multicasts within a group of
communicating processes in the presence of processor crashes and communication failures. It also supports pri-
oritized message delivery, where the application can assign messages to one of several priority classes. Messages
from higher priority classes are served before any waiting messages of lower priority classes, resulting in im-
proved performance for application-critical messages. Atomicity and message ordering are still enforced on a
per-priority basis. It guarantees agreement on membership among the communicating processors, and ensures
that membership changes (e.g., resulting from processor joins or departures) are atomic and ordered with respect
to multicast messages. RTCAST proceeds as senders in a logical ring take turns in multicasting messages over
the network. A processor’s turn comes when the logical token arrives, or when it times out waiting for it. Af-
ter its last message, each sender multicasts a heartbeat that is used for crash detection. The heartbeat received
from an immediate predecessor also serves as the logical token. Destinations detect missed messages using
sequence numbers and when a processor detects a receive omission, it crashes. Each processor, when its turn
comes, checks for missing heartbeats and eliminates the crashed members, if any, from group membership by
multicasting a membership change message.

14

[Real-Time Process Groups API]

Admission Control and
Schedulability Analysis

Group Timed Atomic
Membership Multicast
Service Communication
[Clock Synchronization] [Virtual Network Interface]
r Unreliable Unicast Communication J

Figure 8: Software architecture for the RTCAST middleware services.

In a token ring, sent messages have a natural order defined by token rotation. We reconstruct message order
at the receivers using a protocol layer below RTCAST which detects out-of-order arrival of messages and swaps
them, thus forwarding them to RTCAST in correct order. RTCAST ensures that “correct” members can reach
agreement on replicated state by formulating the problem as one of group membership. Since the state of a pro-
cess is determined by the sequence of messages it receives, a processor that detects a message receive omission
takes itself out of the group, thus maintaining agreement among the remaining ones. In a real-time system one
may argue that processes waiting for a message that does not arrive will miss their deadlines anyway, so it.is
acceptable to eliminate the processor(s) which suffered receive omissions.? A distinctive feature of RTCAST is
that processors which did not omit any messages can deliver messages as soon as they arrive without compro-
mising protocol semantics. Thus, for example, if a reliable multicast is used to disseminate a critical message to
a replicated server, and if one of the replicas suffers a receive omission, RTCAST will eliminate that replica from
the group, while delivering the message to the remaining replicas immediately. This is in contrast to delaying
delivery of the message until all replicas have received it. The approach is motivated by the observation that in
a real-time system it may be better to sacrifice one replica in the group than delay message delivery potentially
causing all replicas to miss a hard timing constraint. Finally, membership changes are communicated exclusively
by membership change messages using our multicast mechanism. Since message multicast is atomic and ordered,
so are the membership changes. This guarantees agreement on membership view.)

From an architectural standpoint, RTCAST operation is triggered by two different event types, namely message
reception, and token reception (or timeout). It is therefore logically structured as two event handlers, one for each
event type. The message reception handler (Figure 9) detects receive omissions if any, delivers messages in
order to the application, and services protocol control messages. The token handler (Figure 10) is invoked when
the token is received or when the token timeout expires. It detects processor crashes and sends membership
change notifications, if any, as well as lets client processes send out their messages during the processors finite
token hold time.

2 A lower communication layer may support a bounded number of retransmissions.

15

msg_reception_handler()
1 if state = RUNNING
if more msgs from same member
if missed msgs —» CRASH else
deliver msg
else if msg from different member
if missed msgs — CRASH else
check for missed msgs from processors
between current and last senders
8 if no missing msgs
9 deliver current msg
10 else CRASH
11 elseif join msg from non-member
12 handle join request
13if state = JOINING AND
msg is a valid join.ack
14 if need more join.acks
15 wait for additional join.acks
16 else state = RUNNING

N

N oy bW

end
Figure 9: Message reception handler
token_handler()
1 if (state = RUNNING)
2 for each processor p in
current membership view
3 if no heartbeat seen from all predecessors
up to and including p
4 remove p from group view
5 multicast new group view
6 send out all queued messages
7 mark the last msg
8 send out heartbeat msg
9 if (state = JOINING)

10 send out join msg
end

Figure 10: Token handler

16

5.2 RTCAST Design and Implementation

This section describes some of the major issues in the design and implementation of RTCAST; our representative
group communication service. A thorough performance evaluation of the service is presented in [18] and [19].

The RTCAST application was implemented and tested over a local Ethernet. Ethernet is normally unsuitable
for real-time applications due to packet collisions and the subsequent retransmissions that make it impossible
to impose deterministic bounds on communication delay. However, since we use a private Ethernet (i.e. the
RTCAST protocol has exclusive access to the medium), only one machine can send messages at any given time
(namely, the token holder). This prevents collisions and guarantees that the Ethernet driver always succeeds in
transmitting each packet on the first attempt, making message communication delays deterministic. The admis-
sion control service described previously can take advantage of this predictability to make real-time guarantees
on messages sent with RTCAST, and to schedule messages for transmission so that they can be delivered by their
deadlines.

5.2.1 Protocol Stack Design

The RTCAST protocol was designed to be modular, so that individual services could be added, changed, or
removed without affecting the rest of the protocol. Each service is designed as a separate protocol layer within
the x-kernel [1] protocol framework. The x-kernel is an ideal choice for implementing the RTCAST middleware
services because application requirements can be easily met by simply reconfiguring the protocol stack to add or
remove services as necessary. The RTCAST implementation uses the following protocol layers:

Admission Control The Admission Control and Schedulability Analysis (ACSA) layer performs message schedul-
ing and real-time delivery guarantees based on the predictable group delivery service provided by the RT-
CAST protocol itself. If deadline-based delivery guarantees are not needed, this layer can be omitted from
the protocol stack to reduce overhead.

RTCAST The RTCAST protocol layer encompasses the membership, logical token ring, and atomic ordering
services described in section 5.

Maulticast Transport This protocol implements an unreliable multicast abstraction that is independent of the
underlying network. RTCAST uses the multicast transport layer to send messages to the group without
having to worry about whether the physical medium provides unicast, broadcast, or true multicast support.
The details of how the messages are actually sent over the network are hidden from higher layers by the
multicast transport protocol, so it is the only layer that must be modified when RTCAST is run on different
types of networks.

IP.ETH,ETHDRYV These are the same as described in Section 4.3.3.

Figure 11 shows the full protocol stack as it is implemented on our platform.

5.2.2 Integration Into the Mach Kernel

As figure 11 shows, the protocol stack representing the core of the service was migrated into the Mach kemel.
While actual RTCAST development took place in user space to facilitate debugging, its final colocation within
the Mach kernel has several performance advantages. First, as with any group communication protocol, there
can be a high amount of CPU overhead to maintain the group state and enforce message semantics. By running
in the kernel, the RTCAST protocol can run at the highest priority and minimize communication latency due
to processing time. Second, in the current implementation of MK 7.2 there is no operating system support

17

-

[APPLICATION]

LIBRARY

INTERFACE STUB

r APPLICATION (SERVICE lNTERFACE)W

LIBRARY
INTERFACE STUB

I

KERNEL (SERVICE INTERFACE)

[Kemel Ethernet Driver I .
Kemel Ethernet Driver

(a) CORDS User-lcvel Server (b) Split In-kernel CORDS Server

Figure 11: RTCAST protocol stack as implemented

for real-time scheduling or capacity reserve. Experience shows that processes running at the user level can be
starved for CPU time for periods of up to a few seconds, which would be disastrous for RTCAST’s predictable
communication. By running in the kernel, protocol threads do not get starved significantly and are scheduled
in a much more predictable manner by the operating system. Finally, there is a problem with the MK 7.2
implementation of the x-kernel, such that threads which are shepherding messages up the protocol stack can be
queued to run in a different order than the messages arrive from the network. This results in out-of-order messages
that must be buffered and re-ordered to maintain the total ordering guarantees provided by the protocol. Having to
buffer and reorder messages also delays crash detection, since there is no way of knowing if a missing message
is queued somewhere in the protocol stack or if the sender suffered a failure. By running the protocol in the
kemel, message threads are interrupt driven and run immediately after arriving from the network, so the message
reordering problem does not occur.

5.2.3 Other RTCAST Implementations

RTCAST has also been ported to Solaris, Linux, and Windows NT. The Linux version has been integrated with
the Linux/RK resource kernel from CMU, which provides a CPU reservation service that we utilize to ensure
RTCAST’s predictability and timeliness. This allows us to provide much stronger real-time guarantees than can
currently be supported by any other platform. This implementation is described in [20], along with a performance
analysis of its timeliness and predictability.

5.2.4 Prioritized Group Communication

RTCAST supports prioritized group communication using a new abstraction we have developed, the priority
queue. This abstraction enables the application to assign priorities to messages, and the communication protocol
will give preference to serving higher priority messages over lower priority ones. Priorities are also considered

18

in the real-time scheduling of message deliveries. If the protocol can guarantee the delivery of a higher-priority
message by violating the deadline of an already guaranteed lower-priority message, it will do so to better meet
the application’s stated priorities regarding communication. Even in non-real-time systems, this abstraction can
improve the predictability of communication performance, since messages of a given priority class tend to have
similar latencies compared to messages from different priority classes.

5.2.5 Interfacing to Applications

Another important focus in developing our group communication middleware was designing a robust API that
would allow application developers to take advantage of our services quickly and easily. RTCAST API includes
(i) bandwidth reservation calls, (ii) process group membership manipulation functions, (iii) best effort commu-
nication primitives and (iv) reliable real-time unicast and multicast. Bandwidth reservation is used on hosts to
ensure that a multicast connection has dedicated CPU capacity and network bandwidth (i.e. a minimum token
hold time). This may be used to provide schedulability guarantees at a higher level. The membership manipu-
lation functions allow processes to join and leave the multicast group, query current group membership, create
groups, etc. There are two types of group communication: real-time communication that guarantees end-to-end
response time, and best effort which does not. The advantages of using a best effort connection is that it is op-
timized for throughput as opposed to meeting individual message deadlines. Thus, the service protocol stack is
faster on the average (e.g., no per-message admission control), but the variance in queuing delays is higher.

We collaborated with a group of researchers at the Honeywell Technology Center to implement a subset of
the fault-tolerant real-time distributed application described in Section 1 using the RTCAST protocol. Using
the insights gained from this motivating application, we were able to refine the API to provide the required
of functionality while maintaining a simple interface that is easy to program. Based on our experience of the
application’s use of the protocol, we also designed a higher-level service library that can be linked with the
application, and which uses the RTCAST APL. It is concerned with resource management in a fault-tolerant sys-
tem and with providing higher-level abstractions of the protocol communication primitives. The service library
provides for logical processing nodes and resource pools that transparently utilize RTCAST group communi-
cation services. These abstractions provide a convenient way for application developers to reason about and
structure their redundancy management and failure handling policies while RTCAST does the actual work of
maintaining replica consistency. The APIs for both the service library and the RTCAST protocol are available at
http://www.eecs.umich.edu/RTCL/armada/rtcast/api.html.

5.3 Other Group Communication Services

In addition to the RTCAST group communication protocol, we have developed a framework for composing
multiple process groups together to build complex, large-scale systems. This framework is based on a new
abstraction, the inter-group router, which enables two process groups to exchange messages without requiring
the group communication middleware for either group to communicate with the other group directly. This reduces
shared state in the system, improving scalability and simplifying design and failure recovery.

Using inter-group routers, groups can be composed together into larger systems while still maintaining well-
defined end-to-end delivery semantics such as causal or total order. We have identified a number of basic com-
position topologies which can be used by the system designer to achieve a given end-to-end delivery semantic.
These topologies can then be combined as needed to form larger systems.

This method for building distributed systems takes advantage of the natural structure of such systems, which
are typically composed of many functional components operating in parallel to complete a particular task. Nor-
mally, in order to take advantage of group communication services, processes for all of these components would

19

have to be placed in a single process group. This greatly magnifies the amount of shared state that must be main-
tained by the system, as well as its communication overhead. In addition, failures or other events occuring in one
component can affect the entire system since all processes belong to the same group.

Using our architecture, these components can be composed independently in separate process groups, simpli-
fying system design. Failures or other events in one component will now not affect other components, since they
belong to different groups. Furthermore, overhead is reduced since messages exchanged entirely within a single
component are not seen or processed by processes in other components. This allows the system to make use
of group communication services without having to manage the extra complexity that comes from having large
numbers of unrelated processes residing in the same group.

One of the advantages of the inter-group router abstraction is that it is independent of any particular group
communication protocol. It operates between the group communication middleware and the application, inter-
cepting and forwarding messages as necessary, so the underlying group communication middleware is not even
aware of its existing. To the group communication protocol, the inter-group routers look like part of the applica-
tion, and the protocol is not even aware of the existence of other groups. This allows any group communication
protocol to utilize the inter-group routers without modification, and without having to do extra work or maintain
extra shared state about other groups in the system.

For a more detailed description of our group composition architecture, please see [21].

6 Real-Time Primary-backup (RTPB) Replication Service

While the previous section introduced a middleware service for active replication, in this section we present the
overall architecture of the ARMADA real-time primary-backup replication service. We first give an introduction
to the RTPB system, then describe the service framework. Finally we discuss implementation of the service that
we believe meets the objectives.

6.1 Introduction to RTPB

Keeping large amounts of application state consistent in a distributed system, as in the state machine approach,
may involve a significant overhead. Many real-time applications, however, can tolerate minor inconsistencies
in replicated state. Thus, to reduce redundancy management overhead, our primary-backup replication exploits
application data semantics by allowing the backup to maintain a less current copy of the data that resides on the
primary. The application may have distinct tolerances for the staleness of different data objects. With sufficiently
recent data, the backup can safely supplant a failed primary; the backup can then reconstruct a consistent system
state by extrapolating from previous values and new sensor readings. However, the system must ensure that the
distance between the primary and the backup data is bounded within a predefined time window. Data objects may
have distinct tolerances in how far the backup can lag behind before the object state becomes stale. The challenge
is to bound the distance between the primary and the backup such that consistency is not compromised, while
minimizing the overhead in exchanging messages between the primary and its backup.

6.2 Service Framework

A very important issue in designing a replication service is its consistency semantics. One category of consistency
semantics that is particular relevant to the primary-backup replication in a real-time environment is temporal
consistency, which is the consistency view seen from the perspective of the time continuum. Two types of
temporal consistency are often needed to ensure proper operation of a primary-backup replicated real-time data

20

services system. One is the external temporal consistency between an object of the external world and its image
on the servers, the other is the inter-object temporal consistency between different objects or events.

A primary-backup system is said to satisfy the external temporal consistency for an object i if the timestamp
of i at the server is no later than a predetermined time from its timestamp at the client (the real data). In other
words, in order to provide meaningful and correct service, the state of the primary server must closely reflect that
of the actual world. This consistency is also needed at the backup if the backup were to successfully replace the
primary when the primary fails. The consistency restriction placed on the backup may not be as tight as that on
the primary but must be within a tolerable range for the intended applications.

The inter-object temporal consistency is maintained if for any object pair, their temporal constraint §;; (which
is the temporal distance of any two neighboring updates for object 4, and j, respectively) is observed at both
primary and backup.

Although the usefulness or practical application of the external temporal consistency concept is easy to see,
the same is not true for inter-object temporal consistency. To illustrate the notion of inter-object temporal con-
sistency, considering an airplane during taking off. There is a time bound between accelerating the plane and the
lifting of the plane into air because the runway is of limited length and the airplane can not keep accelerating
on the runway indefinitely without lifting off. In our primary-backup replicated real-time data service, the inter-
object temporal consistency constraint between an object pair placed on the backup can be different from that
placed on the primary.

6.3 RTPB Implementation

A temporal consistency model for the Real-time Primary-backup (RTPB) replication service has been devel-
oped [22] and a practical version of the system that implements the models has been built. Following our com-
posability model, the RTPB service is implemented as an independent user-level z-kernel based server on our
MK 7.2 based platform. Our system includes a primary server and a backup server. A client application resides
in the same machine as the primary. The client continuously senses the environment and periodically sends up-
dates to the primary. The client accesses the server using a library that utilizes the Mach IPC-based interface.
The primary is responsible for backing up the data on the backup site and limiting the inconsistency of the data
between the two sites within some required window. The following assumptions are made in the implementation:

e Link failures are handled using physical redundancy such that network partitions are avoided.

e An upper bound exists on the communication delay between the primary and the backup. Missed message
deadlines are treated as communication performance failures.

o Servers are assumed to suffer crash failures only.

Figure 12 shows our system architecture and the z-kernel protocol stack for the replication server. The bottom
five layers (RTPB to ETHDRV) make up the z-kernel protocol stack. At the top level of the stack is our real-time
primary-backup (RTPB) protocol. It serves as an anchor protocol in the z-kernel protocol stack. From above,
it provides an interface to the z-kernel based server. From below, it connects with the rest of the protocol stack
through the z-kernel uniform protocol interface. The underlying transport protocol is UDP. Since UDP does not
provide reliable delivery of messages, we need to use explicit acknowledgments when necessary.

The top two layers are the primary-backup hosts and client applications. The primary host interacts with the
backup host through the underlying RTPB protocol. There are two identical versions of the client application
residing on the primary and backup hosts respectively. Normally, only the client version on the primary is
running. But when the backup takes over in case of primary failure, it also activates the backup client version
and bring it up to the most recent state.

21

Primary Backup

RTPB API RTPB API
| x-kernel
paths
RTPB

ETHDRV ETHDRV
RTPB server RTPB server
[OSF MACH KERNEL] [OSF MACH KERNEL]

Ethernet

Figure 12: RTPB architecture and server protocol stack

The client application interacts with the RTPB system through the Mach API interface we developed for the
system. The interface enables the client to create, destroy, manipulate and query reliable objects (i.e., those
backed-up by our server). Specifically, ripb_create, ripb_destroy creates objects on and destroys objects from the
RTPB system; ripb_register register objects with the system; rtpb_update, rtpb_query update and query objects;
finally rtpb_list return a list of objects that are already registered with the RTPB system. Further detail on
admission control, update scheduling, failure detection and recovery appears in a recent report [22].

7 Evaluation Tools

The third thrust of the ARMADA project is to provide tools for validating and evaluating the timeliness and
fault tolerance capabilities of the target system. Two tools have been developed to date: ORCHESTRA, a
message-level fault injection tool for validation and evaluation of communication and middleware protocols, and
COGENT, a network traffic workload generator. The following two subsections describe the two tools briefly.

7.1 Orchestra

Ensuring that a distributed system meets its prescribed specification is a growing challenge that confronts soft-
ware developers and system engineers. Meeting this challenge is particularly important for applications with strict
dependability and timeliness constraints. ORCHESTRA is a fault injection environment which can be used to
perform fault injection on communication protocols and distributed applications. ORCHESTRA is based on a

22

simple yet powerful framework, called script-driven probing and fault injection. The emphasis of this approach
is on experimental techniques intended to identify specific “problems” in a protocol or its implementation rather
than the evaluation of system dependability through statistical metrics such as fault coverage (e.g. [23]). Hence,
the focus is on developing fault injection techniques that can be employed in studying three aspects of a target
protocol: i) detecting design or implementation errors, ii) identifying violations of protocol specifications, and
iii) obtaining insights into the design decisions made by the implementors.

In the ORCHESTRA approach, a fault injection layer is inserted into the communication protocol stack below
the protocol to be tested. As messages are exchanged between protocol participants, they pass through the fault
injection layer on their path to/from the network. Each time a message is sent, ORCHESTRA runs a script
called the send filter on the message. In the same manner, the receive filter is invoked on each message that
is received from the network destined for the target protocol. The scripts perform three types of operations on
messages:

e Message filtering: for intercepting and examining a message.
¢ Message manipulation: for dropping, delaying, reordering, duplicating, or modifying a message.

e Message injection: for probing a participant by introducing a new message into the system.

The ORCHESTRA toolset on the MK 7.2 platform is based on a portable fault injection core, and has been
developed in the CORDS-based x-kernel framework provided by OpenGroup. The tool is implemented as an
x-kernel protocol layer which can be placed at any level in an x-kernel protocol stack. This tool has been used
to perform experiments on both the Group Interprocess Communication (GIPC) services from OpenGroup, and
middleware and real-time channel services developed as part of the ARMADA project. Further details on OR-
CHESTRA can be found in several recent reports, e.g., [24, 25].

7.2 COGENT: COntrolled GEneration of Network Traffic

In order to demonstrate the utility of the ARMADA services, it is necessary to evaluate them under a range of
operating conditions. Because many of the protocols developed rely on the communication subsystem, it is im-
portant to evaluate them under a range of realistic background traffic. Generating such traffic is fairly difficult
since traffic characteristics can vary widely depending on the environment in which these services are deployed.
To this end, we’ve developed COGENT (COntrolled GEneration of Network Traffic). COGENT is a networked
synthetic workload generator for evaluating system and network performance in a controlled, reproducible fash-
jon. It is based on a simple client-server model and allows the user to flexibly model network sources in order to
evaluate various aspects of network and distributed computing.

Implemented in C++ with a 1ex/yacc front end, the current version of the tool takes a high level specification
of the distributed workload and generates highly portable C++ code for all of the clients and servers specified.
The user can select from a number of distributions which have been used to model a variety of network sources
such as Poisson [26, 27], Pareto [28, 29, 30, 26), Log Normal [26], and Log Extreme [27]. The tool then generates
the necessary compilation and distribution scripts for building and running the distributed workload.

COGENT is currently being rewritten in JAVA. Both the generator and the generated code will be JAVA based.
Because of the portability of JAVA, this will simplify both the compilation and distribution of the workload
considerably. We also plan on addressing CPU issues in order to model common activities at the end hosts as
well. Another feature being added is the ability for a client or a server to be run in trace-driven mode. That is, to
run from a web server or a tcpdump [31] log file. Finally, we will be implementing additional source models in
order to keep up with the current literature.

23

8 Conclusions

This paper presented the architecture and current status of the ARMADA project conducted at the University of
Michigan in collaboration with the Honeywell Technology Center. We described a number of communication and
middleware services developed in the context of this project, and illustrated the general methodology adopted to
design and integrate these services. For modularity and composability, ARMADA middleware was realized as a
set of servers on top of a microkernel-based operating system. Special attention was given to the communication
subsystem since it is a common resource to middleware services developed. We proposed a general architecture
for QoS sensitive communication, and also described a communication service that implements this architecture.

We are currently redesigning an existing command and control application to benefit from ARMADA mid-
dleware. The application requires bounded time end-to-end communication delays guaranteed by our commu-
nication subsystem, as well as fault-tolerant replication and backup services provided by our RTCAST group
communication and membership support, and the primary-backup replication service. Testing tools such as
ORCHESTRA will help assess communication performance and verify the required communication semantics.
Controlled workload generation using COGENT can assist in creating load conditions of interest that may be
difficult to exercise via regular operation of the application.

Our services and tools are designed independently of the underlying microkemel or the communication sub-
system; our choice of experimentation platform was based largely on the rich protocol development environment
provided by x-kemnel and CORDS. For better portability, we are extending our communication subsystem to
provide a socket-like API. We are also investigating the scalability of the services developed. Scaling to large
embedded systems may depend on the way the system is constructed from smaller units. We are looking into
appropriate ways of defining generic structural system components and composing large architectures from these
components such that certain desirable properties are globally preserved. Developing the “tokens” and “oper-
ators” of such system composition will enable building predictable analytical and semantic models of larger
systems from properties of their individual constituents.

References

(1] N. C. Hutchinson and L. L. Peterson, “The x-Kernel: An architecture for implementing network protocols,”
IEEE Trans. Software Engineering, vol. 17, no. 1, pp. 1-13, January 1991.

{2] F.Travostino, E.Menze, and F.Reynolds, “Paths: Programming with system resources in support of real-
time distributed applications,” in Proc. IEEE Workshop on Object-Oriented Real-Time Dependable Systems,
February 1996.

[3] A. Mehra, A. Indiresan, and K. Shin, “Structuring communication software for quality of service guaran-
tees,” in Proc. 17th Real-Time Systems Symposium, pp. 144-154, December 1996.

[4] D. Ferrari and D. C. Verma, “A scheme for real-time channel establishment in wide-area networks,” IEEE
Journal on Selected Areas in Communications, vol. 8, no. 3, pp. 368-379, April 1990.

[51 D.D. Kandlur, K. G. Shin, and D. Ferrari, “Real-time communication in multi-hop networks,” IEEE Trans.
on Parallel and Distributed Systems, vol. 5, no. 10, pp. 1044-1056, October 1994.

[6] C. M. Aras, J. F. Kurose, D. S. Reeves, and H. Schulzrinne, “Real-time communication in packet-switched
networks,” Proceedings of the IEEE, vol. 82, no. 1, pp. 122-139, January 1994.

[7] A.Mehra, A. Indiresan, and K. Shin, “Resource management for real-time communication: Making theory
meet practice,” in Proc. 2nd Real-Time Technology and Applications Symposium, pp. 130-138, June 1996.

24

[8] R. L. Cruz, A Calculus for Network Delay and a Note on Topologies of Interconnection Networks, PhD
thesis, University of Illinois at Urbana-Champaign, July 1987. available as technical report UILU-ENG-
87-2246.

[9] D. P. Anderson, S. Y. Tzou, R. Wahbe, R. Govindan, and M. Andrews, “Support for continuous media in
the DASH system,” in Proc. Int’l Conf. on Distributed Computing Systems, pp. 54-61, 1990.

[10] A. Mehra, A. Shaikh, T. Abdelzaher, Z. Wang, and K. Shin, “Realizing guaranteed-qos communication
services on a micro-kernel operating system,” In preparation, July 1997.

[11] K. P. Birman, “The process group approach to reliable distributed computing,” Communications of the
ACM, vol. 36, no. 12, pp. 37-53, December 1993.

[12] Y. Amir, D. Dolev, S. Kramer, and D. Malki, “Transis: A communication sub-system for high availability,”
Technical Report TR CS91-13, Dept. of Computer Science, Hebrew University, April 1992.

[13] R. van Renesse, T. Hickey, and K. Birman, “Design and performance of Horus: A lightweight group com-
munications system,” Technical Report TR94-1442, Dept. of Computer Science, Cornell University, August
1994.

[14] S. Mishra, L. Peterson, and R. Schlichting, “Consul: A communication substrate for fault-tolerant dis-
tributed programs,” Distributed Systems Engineering Journal, vol. 1, no. 2, pp. 87-103, December 1993.

[15] H. Kopetz and G. Griinsteidl, “TTP — a protocol for fault-tolerant real-time systems,” IEEE Computer, vol.
27, no. 1, pp. 14-23, January 1994.

[16] Y. Amir, L. Moser, P. Melliar-Smith, D. Agarwal, and P. Ciarfella, “The Totem single-ring ordering and
membership protocol,” ACM Transactions on Computer Systems, vol. 13, no. 4, pp. 311-342, November
1995.

[17) F. Cristian, B. Dancy, and J. Dehn, “Fault-tolerance in the advanced automation system,” in Proc. of Fault-
Tolerant Computing Symposium, pp. 6-17, June 1990.

[18] T. Abdelzaher, A. Shaikh, F. Jahanian, and K. Shin, “RTCAST: Lightweight multicast for real-time pro-
cess groups,” in Proc. IEEE Real-Time Technology and Applications Symposium (RTAS ’96), pp. 250-259,
Boston, MA, June 1996.

[19] S. Johnson. RTCAST. Tech report, 1997.

[20] S. Johnson, F. Jahanian, A. Miyoshi, D. de Niz, and R. Rajkumar, “Constructing real-time group commu-
nication middleware using the resource kernel,” in Proceedings of the 21st Real-Time Systems Symposium,
2000.

[21] S. Johnson, F. Jahanian, and J. Shah, “The inter-group router approach to scalable group composition,” in
Proceedings of the International Conference on Distributed Computing Systems, 1999.

[22] H.Zou, “Maintaining temporal consistency in primary-backup replicated real-time data servers,” EECS682
Course Project, 1996.

[23] J. Arlat, M. Aguera, Y. Crouzet, J.-C. Fabre, E. Martins, and D. Powell, “Experimental evaluation of the
fault tolerance of an atomic multicast system,” IEEE Trans. Reliability, vol. 39, no. 4, pp. 455-467, October
1990.

25

[24] S. Dawson, F. Jahanian, and T. Mitton, “Testing of Fault-Tolerant and Real-Time Distributed Systems via
Protocol Fault Injection,” in International Symposium on Fault-Tolerant Computing, pp. 404414, Sendai,
Japan, June 1996.

[25] S.Dawson, F. Jahanian, and T. Mitton, “Experiments on six commercial tcp implementations using a soft-
ware fault injection tool,” to appear in Software Practice & Experience.

[26] V. Paxson and S. Floyd, “Wide-area traffic: The failure of poisson modeling,” in SIGCOMM ’94, pp. 257
268, August 1994.

[27] V. Paxson, “Empirically-derived analytic models of wide-area tcp connections,” IEEE/ACM Transactions
on Networking, vol. 2, no. 4, pp. 316-336, August 1994.

[28] W. Leland, M. S. Taqqu, W. Willinger, and D. Wilson, “On the self-similar nature of ethernet traffic (ex-
tended version),” IEEE/ACM Transactions on Networking, vol. 2, no. 1, pp. 1-15, February 1994.

[29] M. Crovella and A. Bestavros, “Self-similarity in world wide web traffic: Evidence and possible causes,” in
SIGMETRICS ’96, May 1996.

[30] M. Garrett and W. Willinger, “Analysis, modeling and generation of self-similar vbr video traffic,” in SIG-
COMM ’94, pp. 269-280, 1994.

[31] S. McCanne and V. Jacobso, “The bsd packet filter: A new architecture for user-level packet capture,” in
Proceedings of the 1993 Winter USENIX Technical Conference, San Diego, CA, January 1993.

26

MISSION
OF
AFRL/INFORMATION DIRECTORATE (IF)

The advancement and application of Information Systems Science
and Technology to meet Air Force unique requirements for

Information Dominance and its transition to aerospace systems 10

meet Air Force needs.

